
EDITSUM: A Retrieve-and-Edit Framework for
Source Code Summarization

Jia Li
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lijia@stu.pku.edu.cn

Yongmin Li
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

liyongmin@pku.edu.cn

Ge Li*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lige@pku.edu.cn

Xing Hu
School of Software Technology

Zhejiang University, Ningbo, China

xinghu@zju.edu.cn

Xin Xia
Faculty of Information Technology

Monash University, Melbourne, Australia

Xin.Xia@monash.edu

Zhi Jin*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhijin@pku.edu.cn

Abstract—Existing studies show that code summaries help
developers understand and maintain source code. Unfortunately,
these summaries are often missing or outdated in software
projects. Code summarization aims to generate natural language
descriptions automatically for source code. According to Gros
et al., code summaries are highly structured and have repetitive
patterns (e.g. “return true if...”). Besides the patternized words,
a code summary also contains important keywords, which are
the key to reflecting the functionality of the code. However,
the state-of-the-art approaches perform poorly on predicting the
keywords, which leads to the generated summaries suffer a loss in
informativeness. To alleviate this problem, this paper proposes
a novel retrieve-and-edit approach named EDITSUM for code
summarization. Specifically, EDITSUM first retrieves a similar
code snippet from a pre-defined corpus and treats its summary
as a prototype summary to learn the pattern. Then, EDITSUM

edits the prototype automatically to combine the pattern in the
prototype with the semantic information of input code. Our
motivation is that the retrieved prototype provides a good start-
point for post-generation because the summaries of similar code
snippets often have the same pattern. The post-editing process
further reuses the patternized words in prototype and generates
keywords based on the semantic information of input code. We
conduct experiments on a large-scale Java corpus (2M) and
experimental results demonstrate that EDITSUM outperforms the
state-of-the-art approaches by a substantial margin. The human
evaluation also proves the summaries generated by EDITSUM

are more informative and useful. We also verify that EDITSUM

performs well on predicting the patternized words and keywords.
Index Terms—Code summarization, Information retrieval,

Deep learning

I. INTRODUCTION

During software development and maintenance, developers

spend around 59% of their time on program comprehension

activities [1]–[3]. A code summary provides a concise natural

language description for a code snippet, which can help

developers understand the program quickly and correctly [4].

Unfortunately, the code summaries are often mismatched,

missing or outdated in the software projects [5]. Additionally,

* Corresponding authors

manually writing summaries during the development is time-

consuming for developers. Therefore, it is important to explore

automatic code summarization approaches.

Traditional approaches generate code summaries based on

the template-based approaches and information retrieval (IR)

based approaches. Template-based approaches [4], [6] firstly

extract the keywords from the source code, and then fill the

keywords into the predefined templates to generate a code

summary. The IR-based approaches use code summaries of

similar code snippets as outputs directly. Among these IR-

based approaches, they retrieve the similar code snippets by

various similarity metrics [7], [8] from open-source software

repositories in GitHub or software Q&A sites [9], [10].

Although the traditional approaches are simple, they have

achieved good results. This is because code summaries are

highly structured and contain many repetitive patterns, e.g.,

“return true if...” and “create a new...” [11]. The manually-

crafted templates and retrieved summaries provide a lot of

reusable patternized words, which play an key role in the code

summaries. However, for template-based approaches, manu-

ally defining templates is time-consuming and laborious, and

requires a lot of expert experience. For IR-based approaches,

there may be semantic inconsistencies between the retrieved

summary and the input code.

With the development of deep learning, there is an emerging

interest in applying neural networks for automatic code sum-

marization. Previous studies [12]–[14] often adopt the encoder-

decoder architecture [15] to learn the mapping between words

and even the grammatical structure from source code to

natural language based on the large-scale corpus. By virtue

of the naturalness of the source code [16], [17], these neural

models can mine patterns for generating code summaries

from a large corpus. Besides the patternized words, a code

summary also contains important keywords, which have a low

frequency in training data, but are the key to reflecting the

functionality of source code (more details can be found in

Section II). However, the state-of-the-art nerual models [12]–
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[14] perform poorly on predicting keywords. For example,

LeClair et al. [14] found 21% summaries written by humans

in the test set contain words with the frequency of less than

100, but only 7% summaries generated by their proposed

approach contain these words. The lack of keywords leads

to the generated summaries suffer a loss in informativeness,

which have a negative impact on program comprehension.

Recently, Wei et al. [18] and Zhang et al. [19] proposed

two retrieval-based neural models to address the problem of

keywords. They used the IR techniques to get the similar

code and its summary, and then input the retrieved results

and the input code into the encoder. With the assistance of

the retrieved summary, their models can accurately generate

patternized words. However, their models only treated the

retrieved results as auxiliary information and don’t solve the

problem of keywords.

In this paper, we propose a novel retrieve-and-edit ap-

proach EDITSUM for code summarization. The improvement

by template-based approaches proves that the importance of

the patterns in code summaries. The improvement by IR-

based approaches shows that the summaries of similar code

snippets often have the same pattern. So, we treat the summary

of similar code as a prototype and extract the pattern from

the prototype. Considering the inconsistencies between the

prototype and input code, we design a neural network to

further edit the prototype automatically based on the semantic

information of input code. Our motivation is that the pattern

in a prototype tells the neural model “how to say” and the

semantic information of input code tells the neural model

“what to say”.

EDITSUM consists of two modules: a Retrieve module and

an Edit module. In the Retrieve module, given an input code

snippet, we use IR techniques to retrieve the similar code

snippet from a large parallel corpus and treat the summary of

the similar code snippet as a prototype. Then, the Edit module

generates a summary by fusing the pattern in prototype and

semantic information of input code. Specifically, we propose

a sequence-to-sequence (seq2seq) neural network to learn to

revise the prototype based on the semantic differences of the

input code and the similar code. To represent the semantic

differences, we calculate an edit vector by concatenating the

weighted sums of insertion word embeddings (words in input

code but not in similar code) and deletion word embeddings

(words in similar code but not in input code). After that, we

revise the prototype summary conditioning on the edit vector

to obtain a new summary.

To evaluate our approach, we conduct experiments on a

real-world Java dataset. The dataset comes from the Sourcerer

repository1 and has been processed by LeClair et al. [14], in-

cluding removing duplicates and dividing into training, valida-

tion, and test sets by projects. We employ the mainstream eval-

uation metric BLEU [20], METEOR [21] and ROUGE [22]

score that are widely used in summary generation task to

evaluate the generated summaries. Experimental results show

1https://www.ics.uci.edu/lopes/datasets/

TABLE I: The patterns of summaries in dataset.

Real Samples

write a test finish to the mesa logger
write this tilemap to an xml file
write the buffer to the output stream
write grid data to the geotiff file
write cdl representation to output stream

Pattern write to

Real Samples

this method sets the help button visible
this method sets the vaule of field
this method sets a search argument for list
this method sets the client id
this method sets the range as a double

Pattern this method sets

Real Samples

convert an image to an array of integer
convert this ip packet to a readable string
convert a jingle description to xml
convert the specified string to a url
convert the date to the given timezone

Pattern convert to

that EDITSUM performs substantially better than the IR-

based baselines and outperforms the state-of-the-art neural

baselines. The human evaluation and qualitative analysis prove

the summaries generated by EDITSUM are informative and

useful for developers to understand programs. Besides, we

verify that EDITSUM not only accurately generates patternized

words, but also generates more keywords.

Our main contributions are outlined as follows:

• We propose a novel retrieve-and-edit approach, namely

EDITSUM, for code summarization. We use the sum-

maries of similar code snippets as prototypes to assist

in generating summaries.

• We design an effective editing module for summary

generation, which can combine the pattern in prototype

with the semantic information of code.

• We conduct extensive experiments to evaluate our ap-

proach on a large-scale Java dataset. The experimental

results show that EDITSUM substantially outperforms the

state-of-the-art approaches.

Paper Organization. The rest of this paper is organized

as follows. Section II describes motivating examples. Section

III presents our proposed approach. Section IV and Section

V describe the experimental setup and results. Section VI

and Section VII discuss some results and describe the related

work, respectively. Finally, Section VIII concludes the paper

and points out future directions.

II. MOTIVATING EXAMPLES

A closer look at the code summarization dataset shows that

patterns such as “creates a new”, “returns true if ”, “load
into”, “convert into” are very frequent [11]. Table I shows

some samples from the dataset provided by LeClair et al.

[14]. The bold words are patternized words, and the dashed

words denote the keywords. Such a code summary can be

regarded as composed of patternized words and keywords.

The pattern ensures the readability of the summary, and the

keywords reflect the functionality of the source code. A good

code summary should contains suitable patternized words and

meaningful keywords.



Input Code:

public Iterator getPrefixes(String namespaceURI) {

List l = URIMap.get(namespaceURI);

return (l == null) ? null : l.iterator();

}

Similar Code:

public String getPrefix(String namespaceURI) {

List<String> l = URIMap.get(namespaceURI);

return (l == null) ? null : l.get(0);

}

Rencos (Input Code): returns an iterator over the values to a specified url.
Human-written (Input Code): return an iterator over all prefixes to a url
Human-written (Similar Code): return a prefix corresponding to a url

Fig. 1: An example of the input code and similar code.

However, previous models perform well on predicting the

patternized word, ignoring the importance of keywords. As

Figure 1 shows, for the input code, we use the open-source

search engine Lucene2 to retrieve the most similar code

snippet from the training corpus. The retrieval metric is based

on the lexical level similarity of the source code.

In Figure 1, the summaries of input code and similar

code have the same pattern (return...to a url), but there are

semantic differences between the similar code and input code.

Although the two Java methods are lexically similar, the input

code returns all prefixes, while the similar code returns a

certain prefix. In Figure 1, the state-of-the-art neural model

Rencos [19] can correctly predict the patternized words (e.g.,

return, to), but it performs poorly on keywords (e.g., prefixes).

The code summaries generated by Rencos achieve high scores

on the patternized words, but they do not clearly express the

purposes of the programs.

In this paper, we address that both pattern and keywords are

important for a code summary. Inspired by previous studies,

we propose a retrieve-and-edit approach by combining the

pattern in existing summaries and the semantic information

of input code to generate informative summaries with suitable

patterns.

III. PROPOSED APPROACH

In this paper, we propose a retrieve-and-edit approach

named EDITSUM for source code summarization, which can

combine the strengths of traditional approaches and neural

models. The overall framework of our model is shown in

Figure 2. Our approach EDITSUM consists of a Retrieve

module and an Edit module and generates a summary in three

steps:

Step 1: Selecting a suitable prototype summary. We use

a massive training set as the retrieval corpus. Given an input

code, the Retrieve module uses the search engine to search for

the similar code-summary pair from the corpus. The retrieval

process is explained in Section III-A.

Step 2: Extracting the semantic information of the input

code. In Figure 2, we mark the lexical differences between the

two Java methods. We find that the different words between

2https://lucene.apache.org/

the two methods reflect their semantic differences to a certain

extent, such as “Iteration” vs “String”, and “Prefixes” vs

“Prefix”. Therefore, we calculate an edit vector based on the

lexical differences between similar code and input code to

represent their semantic differences. The details of this part is

described in Section III-B.
Step 3: Combining the pattern in prototype with semantic

information of input code. To this end, we design a neural

edit module to revise the prototype based on the semantic

differences between the input code and similar code. The

details is presented in Section III-B.

A. Retrieve Module
In our approach, the Retrieve module aims to retrieve the

similar code-summary pair from a corpus given the input

code. Inspired by previous studies [18], [19], we choose the

lexical-level similarity as retrieval metric. Specifically, we

adopt BM25 [23] as the similarity evaluation metric, which is

a bag-of-words retrieval function to estimate the relevance of

documents to a given query. Given a query and a document,

based on TF-IDF [24], the BM25 function calculates the term

frequency in the document of each keyword in the query and

multiplies it by the inverse document frequency of this term.

The more relevant two documents have, the higher the value

of BM25 score. We leverage the open-source search engine

Lucene to build the Retrieve module. Since the size of the

training set is quite large (over 1.9M), we use it as the retrieval

corpus. We first tokenize the source code and summaries and

process each code and summary pair into a document, add it

to the index library, and store it on disk.
As shown in Figure 2, we use different strategies to select

prototypes for training and testing. In testing, we search for

the most similar code from the training set and treat its

summary as the prototype. During the training phase, as we

already know the targrt summary, we first retrieve top-20 code-

summary pairs based on the summary similarity. Then, we

reserve the retrieved summaries as prototypes whose Jaccard
similarity [25] to target summary in the range of [0.3, 0.7].

The Jaccard similarity measures text similarity from a bag-

of-words view, that is formulated as

J(A,B) =
|A ∩B|
|A ∪B| (1)

where A and B are two bags of words and | · | denotes the

number of elements in a collection. The motivation behind

filtering out summaries with Jaccard similarity < 0.3 is the

edit module performs well only if a prototype is lexically

similar to its target summary [26]. Besides, we hope the edit

module does not copy the prototype so we discard summaries

where the prototype and target summary are nearly identical

(i.e. Jaccard similarity > 0.7). We do not use code similarity

to construct training data, because similar code snippets may

correspond to totally different summaries. This is not con-

ducive to our model learning how to revise a prototype. The

preliminary experiments also show that constructing training

data based on code similarity may cause the model to fail to

converge.



Similar Code:

public String get Prefix(String namespaceURI) {

List <String> l = URIMap.get(namespaceURI);

return (l == null) ? null : l.get(0);

}

Input Code:

public Iterator get Prefixes(String namespaceURI) {

List l = URIMap.get(namespaceURI);

return (l == null) ? null : l.iterator();

}

Fig. 2: The overall framework of our approach.

B. Edit Module

After that, the key step is to combine the pattern in the

prototype and the semantic information of input code to

generate a new summary. The structure of the Edit module

is shown in Figure 3. Firstly, we utilize the prototype encoder

to get the vector representation of prototype. Secondly, we

compute the edit vector based on the lexical differences of

two code snippets. The edit vector represents the semantic

differences between the similar code and input code. Lastly,

the summary decoder is used to generate a new summary

conditioning on the prototype representation and edit vector.

1) Prototype Encoder: The prototype encoder takes the

prototype Y ′ as input. We first map the one-hot vector of a

token w′
i into a word embedding y′i:

y′i = W�
e w′

i, i ∈ [1, n] (2)

where n is the length of prototype, We is a trainable word

embedding matrix. To leverage the contextual information, we

use a bidirectional long short-term memory (Bi-LSTM) [27]

unit to process the sequence of word embeddings. At i-th time

step, the hidden state hi of the Bi-LSTM can be represented

by:

−→
h i = LSTM

(−→
h i−1, y

′
i

)
;
←−
h i = LSTM

(←−
h i+1, y

′
i

)
(3)

hi =
[−→
h i ⊕←−

h i

]
(4)

where ⊕ is a concatenation operation. Finally, the prototype

Y ′ is transformed to vector representation {hi}ni=1.

2) Edit Vector: The edit vector z aims to reflect the

semantic differences between the input code X and similar

code X ′. Suppose that X and X ′ only differ by a single word

w. Then one might think that the edit vector z should be equal

to the word embedding for w. Generalizing this intuition to

multi-word edits, the multi-word insertions can be represented

as the sum of the inserted word vectors, and similarly for

multi-word deletions [26].
As shown in Figure 3, we define I = {w | w ∈ X∧w /∈ X ′}

as a insertion word set, and D = {w′ | w′ /∈ X∧w′ ∈ X ′} as a

deletion word set. Because different words influence the edit-

ing process unequally, we represent the differences between

X and X ′ using the weighted sum of word embeddings:

fdiff (X,X ′) =
∑
w∈I

αwΦ(w)⊕
∑
w′∈D

βw′Φ(w′) (5)

where Φ(w) is the word embedding of word w and ⊕ denotes

a concatenation operation. αw is the weight of a insertion word

w, that is computed by the attention mechanism:

αw =
exp (ew)∑

w∈I exp (ew)
(6)

ew = v�
α tanh (Wα [Ψ(w)⊕ hn]) (7)

where vα and Wα are trainable parameters, and hn is the

final hidden state of prototype encoder. βw′ is obtained with

a similar process. Then we compute the edit vector z by fol-

lowing linear projection, which can be regarded as a mapping

from code differences to summary differences.

z = tanh (W · fdiff + b) (8)

where W and b are two trainable parameters.
3) Summary Decoder: After that, we revise the prototype

based on the edit vector to get a new summary. The purpose

of the summary decoder is to generate a new summary.
As shown in Figure 3, the decoder takes the prototype

representation {hi}ni=1 and the edit vector z as inputs and

generate a summary by a LSTM unit with attention. The

hidden state of the decoder is compute by

si = LSTM(si−1, yi−1 ⊕ z) (9)



Fig. 3: The structure of the Edit module.

where si−1 means the previous hidden state of the decoder,

yi−1 is the (i − 1)-th word embedding of ground-truth sum-

mary. We concatenate the edit vector to every input embedding

of the decoder, so the edit information can be utilized in the

entire generation process.

To introduce the information of the prototype, we then

compute a context vector ci by attention mechanism, which is

a weighted sum of prototype representation {hi}ni=1:

ci =

n∑
j=1

ηi,jhj (10)

where attention weights are obtained by

ηi,j =
exp (ei,j)∑n
k=1 exp (ei,k)

(11)

ei,j = v�
η tanh (Wη [hj ⊕ si]) (12)

where vη and Wη are two trainable parameters. Based on

the previous word yi−1, hidden state of the decoder si and

the context vector ci from prototype, our model compute the

probability of i-th token yi:

p (yi) = softmax (Wp [yi−1 ⊕ si ⊕ ci] + bp) (13)

where Wp and bp are two trainable parameters.

C. Loss Function

During training, EDITSUM takes a token sequence of the

input code X , a summary of the input code Y , a token

sequence of the similar code X ′, and the prototype Y ′ as

inputs, respectively. We optimize parameters of EDITSUM

by maximizing the probability of p(Y |z, Y ′). The overall

TABLE II: The statistics of datasets.

Dataset Train Valid Test

Count 1,954,807 104,273 90,908
Avg. tokens in code 29.67 29.68 30.17
Avg. tokens in summary 7.594 7.710 7.654

(a) Code length distribution. (b) Summary length distribution.

Fig. 4: Length distribution of test data.

objective function of our model is to minimize the following

loss function:

L(θ) = −
N∑
i=1

L∑
t=1

logP
(
yit | zi, Y ′

i , y
i
<t

)
(14)

where θ is all trainable parameters. N is the total number of

training instances and L is the length of each ground-truth

summary.

During testing, we utilize the prototype encoder to represent

prototypes and compute edit vectors. Then, the summary

decoder is used to generate directly a summary conditioning

on the prototype representation and edit vector in Equation

(13).



IV. EXPERIMENTAL SETUP

A. Dataset

Following previous studies [14], [18], we conduct exper-

iments on a public large-scale Java dataset3 provided by

LeClair et al. [14]. The raw dataset contains 5.1 million Java

methods, which is collected by Lopes et al. [28] from the

Sourcerer repository. Because the raw dataset contains a large

number of samples (such as repeated and auto-generated code)

that are not suitable for evaluating neural models, LeClair et

al. cleaned and pre-processed the dataset.

Specifically, they first extracted Java methods and Javadocs

from the source code repository. Assuming the first sentence

of the Javadoc describes the method’s behavior [29], they

extracted the first sentence of the Javadoc as the summary of a

method and filtered out non-English samples. Considering the

auto-generated and duplicate code might affect the evaluation,

they removed these samples using heuristic rules [30] and

added unique, auto-generated code to the training set. After

that, they split camel case and underscore tokens and set them

to lower case. Finally, they divided the dataset by project into

training, validation, and test set, meaning that all methods

in one project are grouped into one set. They argued that

the pre-processing of the dataset is necessary for evaluating

the performance of neural models. The statistical results of

the dataset are shown in Table II. Figure 4 shows the length

distribution of source code and summary on the test set.

B. Implementation Details

Our model is implemented based on the Pytorch4 frame-

work. We set word embedding and LSTM hidden states to

100 dimensions and 256 dimensions, respectively. We set the

batch size to 128 and train the model using Adam [31] with

the initial learning rate of 0.001. The learning rate is decayed

with a factor of 0.95 every epoch. To mitigate overfitting,

we use dropout with 0.2. To prevent exploding gradient, we

clip the gradients norm by 5. According to the statistics of

the dataset in Table II and Figure 4, the maximum lengths

of code and summary are set to 100 and 15, respectively.

The vocabulary sizes of the code and summary are 50,000

and 50,000, respectively. The out-of-vocabulary tokens are

replaced by UNK. We train the model for a maximum of 30

epochs and perform an early stop if the validation performance

does not improve for 5 consecutive iterations. During the

testing phase, we use a beam search and set the beam size

to 5. We conduct all experiments on two Nvidia GTX TITAN

Xp GPUs with 12 GB memory. Each experiment is run three

times and the average results are reported.

C. Evaluation Metrics

Following the previous studies [14], [18], [19], we evaluate

all approaches using the metric BLEU [20], METEOR [21],

ROUGE-L [22] and ROUGE-W [22]. We regard a generated

3http://leclair.tech/data/funcom/
4https://pytorch.org/

summary Ŷ as a candidate and a huamn-written summary Y
as a reference.

BLEU calculates the n-gram similarity between the gener-

ated sequence and reference sequence. The BLEU score ranges

from 1 to 100 as a percentage value. The higher the BLEU,

the closer the candidate is to the reference. It computes the

n-gram precision of a candidate sequence to the reference:

BLEU −N = BP · exp
(

N∑
n=1

wn log pn

)
(15)

where pn is the ratio of length n sub-sequences in the

candidate that are also in the reference. In this paper, we report

the BLEU1-BLEU4 scores. BP is brevity penalty.

METEOR calculates the similarity scores between a pair of

sentences by:

METEOR =
(
1− γ · fragβ) · P ·R

α · P + (1− α) ·R (16)

where P and R are the unigram precision and recall, frag
is the fragmentation fraction. α, β and γ are three penalty

parameters whose default values are 0.9, 3.0 and 0.5, respec-

tively.

ROUGE-L computes F-score based on Longest Common

Subsequence (LCS). Suppose the lengths of Ŷ and Y are m
and n, then:

Plcs =
LCS(X,Y )

m
,Rlcs =

LCS(X,Y )

n
(17)

Flcs =

(
1 + β2

)
PlcsRlcs

Rlcs + β2Plcs
(18)

where β = Plcs/Rlcs and Flcs is the value of ROUGE-

L. ROUGE-W [29] is an improved version of ROUGE-L,

which is based on Weighted Longest Common Subsequence

(WLCS).

V. EXPERIMENTAL RESULTS

To evaluate our approach, in this section, we aim to answer

the following three research questions:

• RQ1: How does the EDITSUM perform compared to the

state-of-the-art neural baselines?

• RQ2: How does the EDITSUM perform compared to the

IR-based baselines?

• RQ3: Does EDITSUM perform better than previous ap-

proaches for tackling the keywords problem?

A. RQ1: EDITSUM vs. Neural Baselines

1) Baselines: To answer this research question, we compare

our approach EDITSUM to six state-of-the-art neural models.

• CODE-NN [12] is the first neural network-based model

for code summarization task. It maps the source code

sequence into word embeddings, then uses an LSTM unit

as a decoder to generate summaries, and employs the

attention mechanism to introduce information from the

word embeddings.



TABLE III: The performance of our model compared with baselines.

Approaches Params BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L ROUGE-W

Retrieve module - 32.06 17.83 14.39 12.87 28.62 36.82 25.31
LSI - 31.38 17.05 13.48 12.07 27.71 35.09 24.02
VSM - 31.91 17.52 14.02 12.70 28.26 36.21 24.81
NNGen - 33.48 18.86 14.99 13.44 29.97 38.57 26.07

CODE-NN 36.3M 32.23 14.71 8.558 6.090 29.35 37.64 25.85
DeepCom 37.9M 31.88 16.02 10.10 7.491 31.79 42.45 28.51
attendgru 37.7M 39.00 22.02 14.87 11.27 36.42 48.95 27.96
ast-attendgru 39.7M 39.32 22.19 14.98 11.42 36.99 49.40 33.58
Rencos 57.3M 34.40 19.82 14.34 11.74 34.53 46.35 31.64

Re2Com 28.4M 41.69 25.78 19.70 16.79 38.04 47.65 33.22
EDITSUM 26.4M 45.83 28.37 21.17 16.88 42.93 53.17 37.19

• DeepCom [13] is a seq2seq model with an attention

mechanism that uses LSTM units as the encoder and

decoder. It proposed a SBT algorithm to convert the

AST into a token sequence. It is the first model to

introduce structural information of source code into code

summarization.

• attendgru [14] is an encoder-decoder model with an

attention mechanism, which takes the code sequence as

input and the summary as output.

• ast-attendgru [14] is also a seq2seq model with an atten-

tion mechanism. Different from attendgru, it introduces

the structural information of the source code by using

an encoder to process the traversal sequence of AST. It

concatenates the information from the two encoders as

input to the decoder and generates code summaries.

• Rencos [19] is a retrieval-based neural model that aug-

ments an attentional encoder-decoder model with the

retrieved two most similar code snippets for better source

code summarization.

• Re2Com [18] is a retrieval-based neural model that uses

the summary of the similar code snippet as an exemplar

to generate a code summary.

For a fair comparison, we re-implement the attendgru and

ast-attendgru based on LSTM units. The embedding size and

LSTM states of all baselines are set to 256 dimensions.

2) Results: We calculate the BLEU, METEOR, and

ROUGE scores between the summaries generated by different

approaches and human-written summaries. The experimental

results are shown in Table III. We notice that CODE-NN

performs the worst among all approaches. This is because

CODE-NN directly uses word embeddings as the input of

decoder, and does not further extract the semantic information

from the source code. This shows that whether the semantic

information of the code can be effectively mined has a

greater impact on the performance of the code summarization

model. Both DeepCom and attendgru use the encoder-decoder

framework, but DeepCom performs worse. This is because

the traversal sequence of the AST input by DeepCom is

about 7 times longer than the token sequence of code input

by attendgru. This also verifies the weakness of LSTM in

processing long sequences [32]. The difference between ast-

attendgru and attendgru is that the former introduces the

structural information in the AST, but the improvement is

limited. This is because custom identifiers are removed from

the AST used in ast-attendgru, which limits the structural

information in the AST. Both Rencos and Re2Com combine

the information retrieval technology with neural networks, but

the former is less effective. Rencos retrieved two similar code

snippets from the corpus and directly used them as input to the

model. Re2Com retrieved a similar code from the corpus, and

then sent the summary of the similar code into the model as an

exemplar. The experimental results show that the summary of

similar code contains more valuable and reusable information

than similar code that may contain noise. This also proves that

it is reasonable for us to use the summaries of similar code as

the prototypes.

From Table III, we can see that EDITSUM performs the

best among all neural models, which improves the state-of-the-

art Re2Com by 9.93% in BLEU1, 12,85% in METEOR and

11.58% in ROUGE-L. In particular, compared with Rencos

and Re2Com, EDITSUM performs much better on all metrics.

This is because Rencos and Re2Com are the ensemble neural

models, and they directly enter the retrieved results and the

input code into the model. While EDITSUM regards the pro-

totype summary as an initial draft for post-generation, which

provides many reusable patternized words. So, EDITSUM

focuses on learning how to revise the prototype based on

the differences between the input code and the similar code.

Besides, the number of parameters of EDITSUM is the smallest

among all baselines. It also shows EDITSUM is efficient.

Compared to other metrics, we find that EDITSUM has

a small improvement on BLEU4. This is because the im-

provement by EDITSUM mainly comes from predicting more

keywords. However, the average length of the summaries in

the test set is 7, and these keywords are mainly 1-3 words.

Therefore, EDITSUM has a great improvement on BLEU1-

BLEU3, and a relatively small improvement on BLEU4.

B. RQ2: EDITSUM vs. IR Baselines

1) Baselines: To answer this research question, we compare

our approach EDITSUM to four IR-based baselines.

• Retrieve module is a component of our approach, whose

details are described in Section III-A. We use the sum-

mary of similar code as output directly.



• Latent Semantic Indexing (LSI) [8] is an IR technique

to analyze the semantic relationship between terms in

documents. Given a code snippet, we use LSI to retrieve

the similar code from the training set and use its summary

as output. The retrieval metric is the cosine distance of

the 500-dimensional LSI vector of the source code.

• Vector Space Model (VSM) [8] represents the code

as a vector using Term Frequency-Inverse Document

Frequency (TF-IDF). It uses cosine similarity to retrieve

the summary of the similar code from the training set.

• NNGen [33] is an approach for generating commit

messages based on nearest neighbors algorithm. It first

encodes code changes into the form of a ”bag of words”,

then uses the cosine distance to select the nearest k code

changes. Finally, it chooses the message of the code

change with the highest BLEU score as the final result.

In this paper, we set k as 5.

2) Results: We calculate the BLEU, METEOR, and

ROUGE scores between the summaries generated by differ-

ent IR-based approaches and human-written summaries. The

experimental results are shown in Table III. From Table III,

the Retrieve module performs better compared with other

IR-based approaches. This shows that it is effective for our

Retrieve module to retrieve similar code based on the lexical

similarity. LSI and VSM use different ways (LSI vectors

and TF-IDF) to map source code into a vector, and their

performance is similar. Compared with LSI and VSM, NNGen

directly uses BLEU score as the retrieval metric, so it gets a

higher BLEU score. It is worth noting that the BLEU3 and

BLEU4 score of the IR-based baselines even exceeds that

of some neural models (i.e, CODE-NN and DeepCom). This

shows that the summaries output by the IR-based approaches

have better precision scores of the 3-gram phrase and 4-gram

phrase. This proves that the retrieved summaries contains a

lot of valuable words, which can be used to generate the

new summaries. However, there is still a gap between the

summaries output by the IR-based approaches and the human-

written summaries due to the differences between the similar

code and the input code.

Our model significantly outperforms IR-based baselines

in terms of all metrics, which proves the effectiveness of

the our Edit module. Compared to the IR-based baselines.

our approach EDITSUM treats the retrieved summary as a

prototype, and then revise the prototype conditioning on the

semantic differences between similar code and input code. By

combining the advantages of neural networks and IR-based

approaches, EDITSUM achieves the best performance.

C. RQ3: Tackling keywords problem

1) Metrics: According to the information retrieve technolo-

gies [24], the keywords in the summaries often are informative

and are more likely to be low-frequency words. The statistics

show 94.8% of tokens in the summary vocabulary of the

dataset have a frequency of less than 100. However, as we

described in Section I and II, previous neural network models

TABLE IV: The number of correctly generated low-frequency

words (the rate of keywords in parentheses)

Approaches ≤10 ≤20 ≤50 ≤100

ast-attendgru 262 624 1,575 2,801
Rencos 410 948 2,254 3,791

Re2Com 422 (64.69%) 1,093 (75.21%) 2,808 4,886
EDITSUM 476 (74.58%) 1270 (86.38%) 3066 5260

TABLE V: The results (standard deviation in parentheses) of

human evaluation.

Approaches Naturalness Informativeness Usefulness

Retrieve module 1.790 (0.68) 0.778 (0.59) 0.612 (0.12)
ast-attendgru 1.713 (0.76) 1.288 (0.79) 1.108 (0.89)
Rencos 1.822 (0.73) 1.320 (0.36) 1.140 (0.29)

Re2Com 1.860 (0.64) 1.465 (0.52) 1.341 (0.23)
EDITSUM 1.933 (0.31) 1.802 (0.348) 1.790 (0.29)

perform poorly on predicting low-frequency words. To mea-

sure the ability of our approach on generating keywords, we

collect all correctly predicted words on the test set, calculate

the frequency of these words on the training set, and count

the words with frequencies less than 10, 20, 50, and 100. The

correctly predicted words refers to the overlap between the

generated summary and the reference summary. For the words

with frequencies less than 10 and 20, we manually counted the

rate of keywords among these words.

2) Results: The statistical results are shown in Table IV.

Compared with ast-attendgru, Rencos and Re2Com perform

better on predicting the low-frequency words. This shows

that the summaries of similar code snippets contain a lot of

reusable information. We also can see that EDITSUM can

predict more low-frequency words and more keywords than

other baselines, which means that EDITSUM alleviates the

problem of predicting keywords. The goal of learning how

to revise a prototype makes our model focuses to generate

more keywords.

D. Human Evaluation

1) Metrics: Although the metrics in Section IV-C can

calculate the lexical similarity between the generated sum-

maries and the reference summaries, they can not reflect the

similarity at the semantic level. Moreover, the ultimate goal of

the automatic code summarization model is to help develop-

ers understand the functionality of the program. Therefore,

we conduct a human evaluation to measure the quality of

summaries generated by different baselines on the test set.

Following the previous work [18], we measure three aspects,

including the naturalness (grammaticality and fluency of the

generated summaries), informativeness (the amount of content

carried over from the input code to the generated summaries,

ignoring fluency of the text), and usefulness (what extent the

generated summary is useful for developers to understand

code). All three scores are integers, ranging from 0 to 2

(from bad to good). We invite 10 volunteers with 3-5 years

of Java development experience and excellent English ability



for 1 hour each to evaluate the generated summaries in the

form of a questionnaire. The 10 volunteers are computer

science Ph.D. students and are not co-authors of this paper.

We randomly select 500 samples generated by five models

(100 from Retrieve module, 100 from ast-attendgru, 100 from

Re2Com, 100 from Rencos, and 100 from EDITSUM). The 500

samples are divided into five groups, with each questionnaire

containing one group. We randomly list the summary pairs and

the corresponding input code on the questionnaire and remove

their labels. Each group is evaluated by two volunteers, and

the final result of a pair of summaries is the average of two

volunteers. Volunteers are allowed to search the Internet for

related information and unfamiliar concepts.

2) Results: The evaluation results are shown in Table V.

The standard deviations of all approaches are small, indicating

that their scores are about the same degree of concentration.

Our model is better than all baselines in three aspects. The

Retrieve module can generate more fluent summaries than the

ast-attendgru because its outputs are directly retrieved from the

training set. We also notice that the scores on informativeness
of five models are higher than those on usefulness. This indi-

cates that the generated summaries really contain information

about the code, but this information may be redundant or

not completely correct, so they only provide limited help for

developers to understand the code.

VI. DISCUSSION

A. Qualitative Analysis

We present three examples generated by different ap-

proaches from the test set, as shown in Table VI. These exam-

ples show that the summaries generated by EDITSUM have a

very high semantic similarity with human-written summaries.

From Table VI, previous models cannot generate keywords

accurately, and the generated summaries cannot reflect the

intention of the programs concisely. For example, in case 1,

the aim of this program is to set the color to a darker shade.

However, Re2Com simply describes it as setting the selected

color to the specified color, which is useless for developers to

understand the program. While our model EDITSUM performs

well in both patternized words (e.g. set, to) and keywords (e.g.

darker shade). Besides, compared with Retrieve module, we

can find that our Edit module can make good use of the pattern

in the prototype and revise it based on the semantics of the

input code.

B. Performance for Different Lengths

We also analyze the performance of different models on

different code and summary lengths (number of tokens). We

calculate the BLEU score for each sample on the test set and

average the scores by length. The experimental results are

shown in Figure 5 and Figure 6. From these figures, we can

observe that EDITSUM outperforms the Re2Com with different

code and summary lengths. As the lengths of the code and

summary increase, EDITSUM keeps a stable improvement over

Re2Com. The performance of our model is always better than

TABLE VI: Examples of generated summaries.

Case ID Example

1

public void drawSelected(){
if(unselectedColor instanceof Color){
setPaint(((Color)unselectedColor).darker());

}else{
setPaint(java.awt.Color.yellow);

}
}
Retrieve Module: set the series colors to the chart
ast-attendgru: draws the selected set of the selected color
Rencos: p method description p

Re2Com: set the selected color to the specified color
EDITSUM: set the color to a darker shade
Human-written: set the color to a darker shade

2

public void close() throws IOException {
this.servletInputStream.close();

}
Retrieve Module: close the resources used by the work factory
ast-attendgru: close the underlying servlet
Rencos: close the server

Re2Com: close the resources used by the work factory
EDITSUM: close the underlying stream
Human-written: close the underlying stream

3

public int read() throws IOException{
if(chunkSize==-1){

return -1;
}
if(pos<chunkSize){

pos++;
return in.read();

}else{
readChunksize();
pos=0;
if(chunkSize<=0){

return -1;
}
pos=1;
return in.read();

}
}
Retrieve Module: read some bytes from the stream
ast-attendgru: reads the next byte
Rencos: reads the next byte

Re2Com: read some bytes from the stream
EDITSUM: read the next byte of data from this input stream
Human-written: read the next byte of data from this input stream
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Fig. 5: BLEU scores for different code lengths.

the baseline on the complicated code snippets with a relatively

large length. This also shows the robustness of our model.

C. Threats to Validity

There are three main threats to the validity of our model.

Firstly, we only conducted experiments on a Java dataset.

Although Java may not be representative of all programming

languages, the experimental dataset is large and safe enough
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Fig. 6: BLEU scores for different summary lengths.

to show the effectiveness of our model. Previous studies [18],

[19] also only conducted experiments on this Java dataset.

Besides, our model uses only language-agnostic features and

can be applied in a drop-in fashion to other programming

languages. Secondly, we cannot guarantee that the scores

of human evaluation are fair. To mitigate this threat, we

evaluate every code-summary pair by two evaluators and use

the average score of the two evaluators as the final result.

Finally, the Retrieve module retrieves similar code based on

lexical similarity. This may result in retrieved code and input

code being similar only at the lexical level, but their summaries

are quite different. To address this threat, we use a large-

scale Java dataset (2M) to increase the scale and diversity of

retrieval corpus. The experimental results in Table III prove

that the performance of our retrieval module is comparable to

the performance of some neural network models (CODE-NN,

DeepCom). We also propose an Edit module to alleviate this

threat through revising the prototype according to the semantic

differences between input code and retrieved code.

VII. RELATED WORK

As an integral part of software development, code sum-

maries describe the functionalities of source code. A concise

and clear summary can help developers quickly understand the

purpose of the program. However, it is very time-consuming

and labor-intensive to write a summary manually. Therefore,

more and more researchers are exploring automatic code

summarization technology. Automatic code summarization ap-

proaches vary from manually-crafted templates [?], [6], [34],

[35], information retrieval [7]–[10] and neural networks [12]–

[14], [18], [19].

A. Template-based Approaches

Early studies generated code summaries based on template-

based approaches. Given the signature and body of a method,

Sridhara et al. [?] identified the content for the summary and

generated natural language text that summarizes the method’s

actions. Moreno et al. [6] determined the class and method

stereotypes and used them, in conjunction with heuristics,

to select the information to be included in the summaries.

Then they generated the summaries using existing lexical-

ization tools. McBurney et al. [34] utilized the PageRank

algorithm [36] to select the important methods in the given

method’s context and used a template-based system to generate

English descriptions of Java methods. Generating summaries

based on templates can improve the readability of summaries,

but defining templates is a time-consuming task and requires

extensive domain knowledge. Besides, templates of different

projects cannot be migrated to each other.

B. IR-based Approaches
Information retrieval technologies are also widely used in

automatic code summarization. Haiduc et al. [8] represented

the source code as a vector using two algorithms (VSM and

LSI) and retrieved relevant terms from a code corpus. These

relevant terms were integrated into a code summary. Eddy

et al. [7] proposed a hierarchical probabilistic model that

retrieved relevant terms from the code corpus and fused them

into the summaries. Wong et al. [10] applied a token-based

code clone detection tool to retrieve similar code snippets

in large-scale software repositories. Although promising, IR-

based approaches have two main limitations: first, they fail

to extract accurate keywords used to identify similar code

snippets when identifiers and methods are poorly named.

Second, they rely on the size and diversity of the retrieval

corpus.

C. Neural Network-based Approaches
Recently, more and more neural networks are applied to

generate code summaries. Iyer et al. [12] used a Recurrent

Neural Network (RNN) [37] with an attention mechanism as a

decoder to generate code summaries and achieved good results

on C# and SQL summaries. Because source code contains rich

structural information, Hu et al. [13] proposed a neural model

named DeepCom to utilize the structural information of code.

They proposed a SBT algorithm to convert the AST into a

token sequence, then designed a seq2seq model to generate

summaries for Java methods based on the AST sequence.

LeClair et al. [14] proposed two neural models (attendgru

and ast-attendgru) to generate the summaries by combining

the sequence information and structure information of the

code. Wei et al. [18] proposed an exemplar-based summary

generation framework that used the summary of the similar

code snippet as an exemplar to assist in generating a target

summary. Zhang et al. [19] proposed a retrieval-based neural

model that augments an attentional seq2seq model with the

retrieved two most similar code snippets for better source code

summarization.
Different from the retrieval-based neural models [18], [19],

we regard the retrieved summary as a prototype and combine

the pattern in prototype with semantic information of input

code. While previous models formulate it as a multi-source

seq2seq task, in which the input code, prototype, and similar

code are all fed to the decoder. The experimental results also

prove the superiority of our approach.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we argue that code sumaries are composed of

patternized words and keywords, and emphasize the shortcom-



ings of previous models in predicting keywords. To alleviate

this problem, we propose a retrieve-and-edit approach named

EDITSUM for code summarization. EDITSUM contains two

modules. A Retrieve module for retrieving the similar code

snippet. An Edit module treats the summary of similar code as

a prototype, and combine the pattern in prototype and semantic

information of input code to generate a target summary. We

conducted extensive experiments on a large-scale Java dataset.

The experimental results show that EDITSUM substantially

outperforms the state-of-the-art neural baselines and the IR-

based baselines. Human evaluation and case analysis prove

that EDITSUM can generate concise and informative sum-

maries, which can effectively help developers understand the

intent of the programs. The analysis of the experimental

results shows that EDITSUM can generate more keywords and

performs well on code and summaries of different lengths.

In the future, we will explore how to generate standard and

meaningful code summaries for various software projects.
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“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.


